学校主页
科学研究 | Quick Navigation
学科建设
当前位置: 网站首页 >> 科学研究 >> 学科建设 >> 正文

数论、特殊函数与量子信息创新团队

发布人:    发布时间:2023-11-15    【打印此页】


数论、特殊函数与量子信息创新团队的研究领域为数论和函数不等式、非交换Iwasawa代数(代数数论)、量子信息理论。

函数不等式是数学的基础研究领域之一,其结论在数论、几何、分析、方程、物理等领域都有着广泛的应用。非交换Iwasawa代数是新兴的重要基础前沿研究领域之一,来源于数论和算术代数几何,这些有拓扑性质的代数的结构不为人们所熟知,了解其环论性质对数论、算术代数几何等都有非常重要的意义。量子信息是通过量子系统的纠缠、不可克隆等相干特性进行计算、编码和信息传输的全新信息处理方式,具有不可估量的应用前景。团队主要致力于研究一些特殊函数的不等式理论及其在数论中的应用、Iwasawa代数的环论性质及其在椭圆曲线等数学前沿领域中的应用、探索量子纠缠和量子非局域性之间的关系等。

目前该研究团队在此方面“标志性”成果和创新性贡献简述如下:

(1)在理论上提出了对数完全单调函数的概念,此概念已成为数学理论中的一个基本概念和标准术语。此领域的研究在国内外处于领先地位。

(2)在非交换Iwasawa代数的结构的研究成果目前主要集中在正规元方面。这些研究已经初步应用于Iwasawa代数的理想及椭圆曲线算术研究。

(3)在最大纠缠态的量子非局域性的研究取得了一系列成果,这些成果已经在量子密码协议中得到应用。 



代表性论文列表

1.  Chao-Ping Chen and H.M. Srivastava, Complete asymptotic expansions related to the probability density function of the χ2 -distribution, Applicable Analysis and Discrete Mathematics, 2022, 16 (1): 218–231.

2. Chao-Ping Chen and and B. Malesevic, A method to prove inequalities and its applications, J.Math. Inequal. 2022, 16 (3): 923–945.

3. Chao-Ping Chen∗, H.M. Srivastava, Some new properties of the Barnes G-function and related results, Appl. Anal. Discrete Math. 15 (2021), no. 1, 129–150.

4. Chao-Ping Chen∗ and R.B. Paris, On the Wilker and Huygens-type inequalities, Journal of Mathematical Inequalities 14 (3) (2020), 685–705.

5. Chao-ping Chen∗ and R. B. Paris, An inequality involving the constant e and a generalized Carlemantype inequality, Mathematical Inequalities and Applications 23 (2020), No. 4, 1197–1203.

6. Dong Han, Jishnu Ray, Feng Wei, Normal Elements in the Iwasawa Algebras of Chevalley Groups, ,Manuscripta math., 2021.07,165: 415-451.

7. Ying-Hui Yang, Guang-Wei Mi, Shi-Jiao Geng, Qian-Qian Liu and Hui-Juan Zuo, Strong nonlocality with genuine entanglement based on GHZ-like states in multipartite quantum systems, Phys. Scr. 98, 015104 (2023)

8. Ying-Hui Yang, Rang-Yang Yan, Xiao-Li Wang, Jiang-Tao Yuan and Hui-Juan Zuo, Novel method for one-way local distinguishability of generalized Bell states in arbitrary dimension, J. Phys. A: Math. Theor., 55, 015301(2022).

9. Ying-Hui Yang, Qian-Qian Liu, Guang-Wei Mi and Tai-Yan Jing, Local discrimination of qudit lattice states, Quantum Information Processing, 21, 320 (2022).

10. Ying-Hui Yang, Gao-Feng Mu, Jiang-Tao Yuan and Cai-Hong Wang, Distinguishability of generalized Bell states in arbitrary dimension system via one-way local operations and classical communication, Quantum Information Processing, 20, 52 (2021).

11. Ying-Hui Yang, Jiang-Tao Yuan, Cai-Hong Wang and Shi-Jiao Geng, Locally distinguishable maximally entangled states by two-way LOCC, Quantum Information Processing, 20, 18 (2021).

12. Sha Yao;Zhi Li;Xiangyu Zhou; On the optimal L2 extension theorem and a question of Ohsawa. Nagoya Mathematical. Journal. 245(2022), 154–165.

13. Wang Yongli, Hu Peichu, Xu Qiuliang. Quantum Secure Multi-party Summation Based on Entanglement Swapping. Quantum Information Processing, 2021, 20(10): No. 319.

14. Wang Yongli, Hu Peichu, Xu Qiuliang. Quantum Protocols for Private Set Intersection Cardinality and Union Cardinality Based on Entanglement Swapping. International Journal of Theoretical Physics, 2021, 60(9): 3514-3528.

学术交流

近年来,团队成员与国内外同行合作有着密切合作,获得了系列具有国际先进水平的创新成果。通过多次邀请知名专家来校交流、举办线上学术会议等方式加深同行对我院的了解。   

(图为2017年举办的量子密码与量子信息前沿研讨会)

(图为2019年举办的量子信息前沿研讨会)

(图为2023年举办的量子信息与图论系列报告研讨会)

(图为2022年邀请中山大学助理教授魏国栋作线上报告)

(图为2022年邀请北大博士后何柏颉作线上报告)

(图为2022年邀请北京邮电大学讲师李植作线上报告)

上一条:偏微分方程创新团队

澳门人威尼斯官方网 中国 河南焦作 高新区 世纪路2001号 [454000]
版权所有 ? 2023 澳门人威尼斯(中国)有限公司官方网站 校ICP备