王康乐,男,汉族,河南武陟人,1982年8月生,博士,副教授,澳门人威尼斯官方网硕士生导师。
主要研究方向:分数阶微分方程;分形理论;变分原理;孤波理论。
科研情况:
1.分数阶微分方程的近似解析解研究;博士基金,主持
2.基于介观方法的磁流体结构,磁化,流变问题数值模拟研究;青年探索基金,参与第二。
论文情况(第一作者):
1.A fractal variational principle for the telegraph equation with fractal derivative, Fractals, 28(4)(2020)2050058.
2. Fractal solitary wave solutions for fractal nonlinear dispersive Boussinesq-Like models, Fractals, 30(4)(2022)2250083.
3. Exact travelling wave solution for the fractal Riemann wave model arising in ocean science, Fractals, 30(7)(2022)2250143.
4.Effect of Fangzhu's nanoscale surface morphology on water collection, Mathematical Methods in Applied Sciences, 2020, 2020(2020),1-10.
5.New perspective to the fractal Konopelchenko-Dubrovsky equations with M-truncated fractional derivative, International Journal of Geometric Methods in Modern Physics, 2023,20(5):2350072.
6.Novel approach for fractal nonlinear oscillators with discontinuities by Fourier series, Fractals, 2022,30(1):2250009
7.A novel perspective to the local fractional Zakharov-Kuznetsov-modified equal width dynamical model on Cantor sets, Mathematical Methods in Applied Sciences, 46(1)(2022)622-630.
8. Construction of fractal soliton solutions for the fractional evolution equations with conformable derivative, Fractals, 2023,31(1):2350014.
E-mail:kangle83718@163.com