报告题目:A numerical method for solving the nonlinear Fermi-Pasta-Ulam problem
报告人:任金城
工作单位:河南财经政法大学
报告时间:2023年11月18日下午4:30-6:30.
报告地点:澳门人威尼斯官方网305
报告摘要:An effective finite difference scheme for solving the nonlinear Fermi-Pasta-Ulam (FPU) problem is derived. The most important feature of the scheme inherits energy conservation property from the nonlinear FPU problem. The unique solvability and the convergence of the difference scheme are proved by the energy method. The convergence order is O(t2+ h2) in the maximum norm, where t is the temporal grid size and h is the spatial grid size, respectively. In addition, the stability of the difference scheme is obtained. Numerical results are presented to support the theoretical analysis and verify numerically the energy conservation property.
报告人简介:任金城,教授,硕士生导师,河南财经政法大学澳门人威尼斯官方网副院长,国家级线上一流本科课程负责人,河南省优秀教师,河南省文明教师,河南省优秀教学标兵,河南省教育厅学术技术带头人,全国大学生数学建模竞赛优秀指导教师,河南财经政法大学青年拔尖人才,河南财经政法大学教学名师,河南财经政法大学师德标兵。现主持国家自然科学基金面上项目1项,主持完成国家自然科学基金青年基金和天元基金项目各1项,主持河南省高校科技创新团队项目和河南省高校科技创新人才项目各1项,省厅级项目10余项。出版个人学术专著2部,在国际SCI期刊Journal of Computational Physics和Journal of Scientific Computing等杂志发表论文四十余篇。获河南省科学技术奖—自然科学三等奖1项,河南省教育厅科技成果一等奖1项,河南省教育厅科技论文一等奖3项。